Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.493
Filtrar
1.
Sci Rep ; 14(1): 5080, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429521

RESUMO

The polycyclic aromatic hydrocarbon (PAH) concentrations in total suspended particulate matter (TSP) samples collected from October, 2021 to September, 2022 were analyzed to clarify the pollution characteristics and sources of 16 PAHs in the atmospheric TSP in Bengbu City. The ρ(PAHs) concentrations ranged from 1.71 to 43.85 ng/m3 and higher concentrations were detected in winter, followed by spring, autumn, and summer. The positive matrix factorization analysis revealed that, in spring and summer, PAH pollution was caused mainly by industrial emissions, gasoline and diesel fuel combustion, whereas in autumn and winter, it was coal, biomass and natural gas combustion. The cluster and potential source factor analyses showed that long-range transport was a significant factor. During spring, autumn, and winter, the northern and northwestern regions had a significant impact, whereas the coastal area south of Bengbu had the greatest influence in summer. The health risk assessment revealed that the annual total carcinogenic equivalent concentration values for PAHs varied from 0.0159 to 7.437 ng/m3, which was classified as moderate. Furthermore, the annual incremental lifetime cancer risk values ranged from 1.431 × 10-4 to 3.671 × 10-3 for adults and from 6.823 × 10-5 to 1.749 × 10-3 for children, which were higher than the standard.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Medição de Risco , Gasolina , China
2.
Environ Pollut ; 348: 123869, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548150

RESUMO

The Chinese central government has initiated pilot projects to promote the adoption of gasoline containing 10%v ethanol (E10). Vehicle emissions using ethanol blended fuels require investigation to estimate the environmental impacts of the initiative. Five fuel formulations were created using two blending methods (splash blending and match blending) to evaluate the impacts of formulations on speciated volatile organic compounds (VOCs) from exhaust emissions. Seven in-use vehicles covering China 4 to China 6 emission standards were recruited. Vehicle tests were conducted using the Worldwide Harmonized Test Cycle (WLTC) in a temperature-controlled chamber at 23 °C and -7 °C. Splash blended E10 fuels led to significant reductions in VOC emissions by 12%-75%. E10 fuels had a better performance of reducing VOC emissions in older model vehicles than in newer model vehicles. These results suggested that E10 fuel could be an option to mitigate the VOC emissions. Although replacing methyl tert-butyl ether (MTBE) with ethanol in regular gasoline had no significant effects on VOC emissions, the replacement led to lower aromatic emissions by 40%-60%. Alkanes and aromatics dominated approximately 90% of VOC emissions for all vehicle-fuel combinations. Cold temperature increased VOC emissions significantly, by 3-26 folds for all vehicle/fuel combinations at -7 °C. Aromatic emissions were increased by cold temperature, from 2 to 26 mg/km at 23 °C to 33-238 mg/km at -7 °C. OVOC emissions were not significantly affected by E10 fuel or cold temperature. The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of splash blended E10 fuels decreased by up to 76% and 81%, respectively, compared with those of E0 fuels. The results are useful to update VOC emission profiles of Chinese vehicles using ethanol blended gasoline and under low-temperature conditions.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Gasolina/análise , Temperatura Baixa , Compostos Orgânicos Voláteis/análise , Etanol , Emissões de Veículos/análise , China , Poluentes Atmosféricos/análise
3.
Environ Pollut ; 347: 123665, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432344

RESUMO

Vehicular emissions deteriorate air quality in urban areas notably. The aim of this study was to conduct an in-depth characterization of gaseous and particle emissions, and their potential to form secondary aerosol emissions, of the cars meeting the most recent emission Euro 6d standards, and to investigate the impact of fuel as well as engine and aftertreatment technologies on pollutants at warm and cold ambient temperatures. Studied vehicles were a diesel car with a diesel particulate filter (DPF), two gasoline cars (with and without a gasoline particulate filter (GPF)), and a car using compressed natural gas (CNG). The impact of fuel aromatic content was examined for the diesel car and the gasoline car without the GPF. The results showed that the utilization of exhaust particulate filter was important both in diesel and gasoline cars. The gasoline car without the GPF emitted relatively high concentrations of particles compared to the other technologies but the implementation of the GPF decreased particle emissions, and the potential to form secondary aerosols in atmospheric processes. The diesel car equipped with the DPF emitted low particle number concentrations except during the DPF regeneration events. Aromatic-free gasoline and diesel fuel efficiently reduced exhaust particles. Since the renewal of vehicle fleet is a relatively slow process, changing the fuel composition can be seen as a faster way to affect traffic emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Gasolina , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Automóveis , Poeira , Aerossóis , Veículos Automotores , Material Particulado/análise
4.
Environ Sci Technol ; 58(12): 5325-5335, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409740

RESUMO

Upgrading to the CHINA 7 standard is crucial for managing air pollution from passenger vehicles in China. Meanwhile, China aims to achieve carbon neutrality by 2060, which necessitates large-scale replacement of gasoline vehicles with electric vehicles in the future. Consequently, the public might view upgrading gasoline vehicles to the CHINA 7 standard as redundant. However, the emission reduction benefits of upgrading standards in the context of uncertain electrification ambitions have not received adequate attention. Here, we show that upgrading standards will compensate for the absence of emissions reductions due to hindered electrification efforts. In the best scenario, China's CO2 emissions can be reduced to 0.047 Gt and NOx to 8.2 × 103 t in 2050. In nonextreme electrification scenarios with CHINA 7 standard, the emission intensity reduction will remain the main driver for emission reductions, outweighing the electrification contribution. In extreme electrification scenarios, upgrading standards will tackle the increased emissions from plug-in hybrid electric vehicles. Our fleet-level results advocate for early standards upgrades to enhance resilience against air pollution risks arising from uncertainties in electrification. Our evidence from China, with one of the most stringent emission standards, can provide a reference point for the world on the upgrading passenger vehicle emission standard issue.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Gasolina , Incerteza , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China , Veículos Automotores
5.
Environ Sci Pollut Res Int ; 31(14): 21709-21720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393567

RESUMO

Continued improvements in living standards and the economic well-being in the megacities have led to a huge surge in vehicular density. The worst environmental outcome of the same has been persistent unsafe urban air quality, thanks to vehicular emission. Further, the existing inspection and maintenance programs, conceived to check such emission remain largely ineffective, particularly in developing countries. This is due to the absence of a thorough assessment of the vehicle's compliance with the in-use emission norms generated through reliable field investigation data. To address this gap, the present comprehensive study collected real-time tailpipe emission data from 2040 cars in Delhi, India. Exhaust emission parameters, namely, CO (carbon monoxide), HC (hydrocarbon), and SE (smoke emission), were recorded from both petrol and diesel-driven cars of private ownership, in collaboration with the emission compliance test centers. The performance of cars was assessed in terms of their compliance with the in-use BS (Bharat Stage) emission norms. The one-of-its-kind study reported the petrol cars to be highly compliant toward the BS IV norm while faring even better toward BS II for both CO and HC emissions (80-90%). The conformance to the HC norm was found to be typically better than that for CO (85-90% versus 75-80%). For the diesel-driven cars, BS III compliance levels were reported relatively better compared to BS IV (90% in the case of the former against 80% in the latter's case). Further, the study puts forward a clear indication that the in-use emission norm and maintenance status of cars have a direct and negative relationship with tailpipe emission parameters. Cars of both overseas and domestic origin have almost equal degrees of compliance with the emission norms (over 80% in any case). The study recommends the incorporation of these two critical vehicular variables, i.e., maintenance status and in-use emission standard in the emission certification policy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Automóveis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Emissões de Veículos/análise , Monóxido de Carbono/análise , Gasolina/análise
6.
Environ Pollut ; 346: 123587, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367695

RESUMO

The turbocharged Miller cycle strategy is studied to improve the power density of diesel engines and reduce emissions. A thermodynamic model and a 1D simulation model of turbocharged diesel engine are established. Results show that the introduction of the Miller cycle reduces the thermal efficiency under naturally aspirated conditions because of the low effective compression ratio, whereas it increases the thermal efficiency under a turbocharged condition owing to the energy recovered by the turbocharger. Under restricted combustion pressure and fixed intake mass, the thermal efficiency first increases and then decreases with increasing Miller cycle ratio, and the peaks occur at approximately 30%-50%. The gain of isochoric combustion ratio overlaps the loss of effective compression ratio due to the Miller cycle on the lower side, whereas it reverses on the higher side. With maximum and equal intake mass, the maximum power initially increases and subsequently decreases with increasing Miller cycle ratio, reaching a peak at 40%. Under a fixed isochoric combustion ratio, the thermal efficiency first increases and then decreases with increasing intake mass, and the optimum intake mass corresponding to the highest thermal efficiency decreases with increasing Miller cycle ratio. The lower the restricted combustion pressure is, the higher the gain in power and thermal efficiency by the Miller cycle strategy. Based on the calculation of the 1D model validated using a practical engine, the power can be increased from 41.6 kW/L to 100 kW/L while the brake thermal efficiency can be increased from 34.98% into 38.55% by increasing the Miller cycle ratio from 19% to 30% and the combustion pressure from 17.7 MPa to 35 MPa. With the application of the supercharged Miller cycle, when the Miller cycle ratio is 30% and the power intensity is increased from 60 kW/L to 100 kW/L, NOx decreases by 32.4%, CO decreases by 28%, showing a tendency to decrease and then stabilize, and HC increases by 5.3%. When the power is 80 kW/L and the Miller cycle ratio is increased from 10% to 30%, NOx decreases by 8.6%, CO decreases by 2%, and HC increases by 0.04%.


Assuntos
Gasolina , Emissões de Veículos , Termodinâmica , Biocombustíveis , Monóxido de Carbono/análise
7.
J Environ Manage ; 354: 120410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402784

RESUMO

Human urine is rich in nitrogen and phosphorus, and the presence of these elements in wastewater significantly disrupts the biogeochemical cycle. Meanwhile, green algal biomass cultivation is unfeasible without these nutrients. Hence, the present study integrates wastewater treatment and algae cultivation to extract biodiesel and improve its performance through fuel modification. Chlorella vulgaris algae was cultivated in different dilution ratios of water and urine, and the nutrient removal rate was analyzed. Chlorella vulgaris algae biodiesel (CAB) was derived through Bligh and Dyer's method followed by transesterification, and its functional and elemental groups were analyzed. The various volume concentrations of CAB were blended with regular diesel fuel (RDF), and 10% water was added to a 30% CAB blended RDF to evaluate the combustion performance and environmental impacts. The results of the experiments demonstrated that the algae cultivation effectively removed the wastewater nutrients. The functional and elemental groups of CAB are identical to those of RDF. The engine characteristics of test fuels report that the CAB-blend RDF fuel mixtures generate low carbon footprints, whereas negative impacts have been drawn for performance metrics and oxides of nitrogen emissions. The water-emulsified fuel outweighed the unfavorable effects and promoted more efficient and cleaner combustion.


Assuntos
Chlorella vulgaris , Microalgas , Purificação da Água , Humanos , Águas Residuárias , Biocombustíveis/análise , Água/análise , Biomassa , Gasolina/análise , Nutrientes , Nitrogênio/análise
8.
Environ Sci Technol ; 58(9): 4137-4144, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373231

RESUMO

The transportation sector is the largest emitter of greenhouse gas emissions (GHGs) in the United States. Increased use of public transit and electrification of public transit could help reduce these emissions. The electrification of public transit systems could also reduce air pollutant emissions in densely populated areas, where air pollution disproportionally burdens vulnerable communities with high health impacts and associated social costs. We analyze the life cycle emissions of transit buses powered by electricity, diesel, gasoline, and compressed natural gas and model GHGs and air pollutants mitigated for a transition to a fully electric U.S. public transit bus fleet using transit agency-level data. The electrification of the U.S. bus fleet would reduce several conventional air pollutants and has the potential to reduce transit bus GHGs by 33-65% within the next 14 years depending on how quickly the transition is made and how quickly the electricity grid decarbonizes. A levelized cost of driving analysis shows that with falling capital costs and an increase in annual passenger-kilometers of battery electric buses, the technology could reach levelized cost parity with diesel buses when electric bus capital costs fall below about $670 000 per bus.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Estados Unidos , Emissões de Veículos/análise , Gases de Efeito Estufa/análise , Poluentes Atmosféricos/análise , Veículos Automotores , Gasolina/análise
9.
Environ Sci Pollut Res Int ; 31(12): 18785-18796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349495

RESUMO

Recovering renewable chemicals from de-fatted microalgal residue derived from lipid extraction within the algal-derived biofuel sector is crucial, given the rising significance of microalgal-derived biodiesel as a potential substitute for petroleum-based liquid fuels. As a circular economy strategy, effective valorization of de-fatted biomass significantly improves the energetic and economic facets of establishing a sustainable algal-derived biofuel industry. In this scenario, this study investigates flash catalytic pyrolysis as a sustainable pathway for valorizing Scenedesmus sp. post-extraction residue (SPR), potentially yielding a bio-oil enriched with upgraded characteristics, especially renewable aromatic hydrocarbons. In the scope of this study, volatile products from catalytic and non-catalytic flash pyrolysis were characterized using a micro-furnace type temperature programmable pyrolyzer coupled with gas chromatographic separation and mass spectrometry detection (Py-GC/MS). Flash pyrolysis of SPR resulted in volatile products with elevated oxygen and nitrogen compounds with concentrations of 46.4% and 26.4%, respectively. In contrast, flash pyrolysis of lyophilized microalgal biomass resulted in lower concentrations of these compounds, with 40.9% oxygen and 17.3% nitrogen. Upgrading volatile pyrolysis products from SPR led to volatile products comprised of only hydrocarbons, while completely removing oxygen and nitrogen-containing compounds. This was achieved by utilizing a low-cost HZSM-5 catalyst within a catalytic bed at 500 °C. Catalytic experiments also indicate the potential conversion of SPR into a bio-oil rich in monocyclic aromatic hydrocarbons, primarily BETX, with toluene comprising over one-third of its composition, thus presenting a sustainable pathway for producing an aromatic hydrocarbon-rich bio-oil derived from SPR. Another significant finding was that 97.8% of the hydrocarbon fraction fell within the gasoline range (C5-C12), and 35.5% fell within the jet fuel range (C8-C16). Thus, flash catalytic pyrolysis of SPR exhibits significant promise for application in drop-in biofuel production, including green gasoline and bio-jet fuel, aligning with the principles of the circular economy, green chemistry, and bio-refinery.


Assuntos
Hidrocarbonetos Aromáticos , Óleos de Plantas , Polifenóis , Scenedesmus , Scenedesmus/metabolismo , Pirólise , Gasolina , Biocombustíveis , Temperatura Alta , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/química , Catálise , Nitrogênio , Oxigênio , Biomassa
10.
Chemosphere ; 352: 141450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367876

RESUMO

The current study explores the co-pyrolysis of waste motor oil (WMO) and rice stubble in a designed lab-scale pyrolyzer to produce alternative energy fuels. The parameter screening was followed by optimization utilizing the Box-Behnken design (BBD). Reactor temperature (TR), mixing ratio (M), and holding time (t) affected the co-pyro-oil yield substantially. A maximum co-pyro-oil yield of 90.3% was achieved at a TR = 485 °C, t = 12.5 min, and M = 5% rice stubble to waste motor oil, which was further characterized and compared with the commercial diesel fuel properties. The highest research octane number of 76.15 was obtained for the co-pyro-oil (Co-PO), followed by the pyro-oil generated from only waste motor oil (POWMO). Consequently, the paraffin content increased to 64.34 wt% from 27.66 wt % for PO RS. The carbon number varied from C7-C17 for PO WMO and Co-Po, aligning with the diesel fuel requirements. Furthermore, a substantial enrichment in the physio-chemical properties of the produced Co-PO with reduced moisture content and enhancement in higher heating value (HHV) was also noticed. Hence, the generated Co-PO could be utilized as transport-grade fuel.


Assuntos
Oryza , Petróleo , Gasolina , Pirólise , Óleos
11.
Environ Sci Technol ; 58(8): 3787-3799, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350416

RESUMO

Plug-in electric vehicles (PEVs) can reduce air emissions when charged with clean power, but prior work estimated that in 2010, PEVs produced 2 to 3 times the consequential air emission externalities of gasoline vehicles in PJM (the largest US regional transmission operator, serving 65 million people) due largely to increased generation from coal-fired power plants to charge the vehicles. We investigate how this situation has changed since 2010, where we are now, and what the largest levers are for reducing PEV consequential life cycle emission externalities in the near future. We estimate that PEV emission externalities have dropped by 17% to 18% in PJM as natural gas replaced coal, but they will remain comparable to gasoline vehicle externalities in base case trajectories through at least 2035. Increased wind and solar power capacity is critical to achieving deep decarbonization in the long run, but through 2035 we estimate that it will primarily shift which fossil generators operate on the margin at times when PEVs charge and can even increase consequential PEV charging emissions in the near term. We find that the largest levers for reducing PEV emissions over the next decade are (1) shifting away from nickel-based batteries to lithium iron phosphate, (2) reducing emissions from fossil generators, and (3) revising vehicle fleet emission standards. While our numerical estimates are regionally specific, key findings apply to most power systems today, in which renewable generators typically produce as much output as possible, regardless of the load, while dispatchable fossil fuel generators respond to the changes in load.


Assuntos
Poluição do Ar , Gasolina , Humanos , Gasolina/análise , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Centrais Elétricas , Políticas , Carvão Mineral , Gás Natural , Veículos Automotores
12.
Appl Microbiol Biotechnol ; 108(1): 202, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349550

RESUMO

Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.


Assuntos
Aureobasidium , Biofilmes , Carbonato de Cálcio , Produtos Agrícolas , Gasolina
13.
J Environ Manage ; 353: 120188, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308990

RESUMO

With the global emphasis on environmental protection and increasingly stringent emission regulations for internal combustion engines, there is an urgent need to overcome the problem of large hydrocarbon (HC) emissions caused by unstable engine cold starts. Synergistic engine pre-treatment (reducing hydrocarbon production) as well as after-treatment devices (adsorbing and oxidizing hydrocarbons) is the fundamental solution to emissions. In this paper, the improvement of hydrocarbon emissions is summarized from two aspects: pre-treatment and after-treatment. The pre-treatment for engine cold start mainly focuses on summarizing the intake control, fuel, and engine timing parameters. The after-treatment mainly focuses on summarizing different types of adsorbents and modifications (mainly including different molecular sieve structures and sizes, preparation conditions, silicon aluminum ratio, ion exchange modification, and heterogeneity, etc.), adsorptive catalysts (mainly including optimization of catalytic performance and structure), and catalytic devices (mainly including coupling with thermal management equipment and HC trap devices). In this paper, a SWOT (strength, weakness, opportunity, and threat) analysis of pre-treatment and after-treatment measures is conducted. Researchers can obtain relevant research results and seek new research directions and approaches for controlling cold start HC emissions.


Assuntos
Automóveis , Gasolina , Gasolina/análise , Emissões de Veículos/análise , Adsorção , Hidrocarbonetos/análise
14.
J Environ Sci (China) ; 140: 59-68, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331515

RESUMO

Because of global warming, people have paid more attention to greenhouse gas emitted by vehicles. To quantify the impact of temperature on vehicle CO2 emissions, this study was conducted using the world light vehicle test cycle on two light-duty E10 gasoline vehicles at ambient temperatures of -10, 0, 23, and 40℃, and found that CO2 emission factors of Vehicle 1 in the low-speed phase were 22.07% and 20.22% higher than those of Vehicle 2 at cold start and hot start under -10℃. The reason was vehicle 1 had a larger displacement and more friction pairs than vehicle 2. There was the highest CO2 emission at the low-speed phase due to low average speed, frequent acceleration, and deceleration. The CO2 temperature factor and the ambient temperature had a strong linear correlation (R2 = 0.99). According to CO2 temperature factors and their relationships, CO2 emission factors of other ambient temperatures could be calculated when the CO2 emission factor of 23℃ was obtained, and the method also could be used to obtain the CO2 temperature factors of different vehicles. To separate the effect of load setting and temperature variation on CO2 emission quantitatively, a method was proposed. And results showed that the load setting was dominant for the CO2 emission variation. Compared with 23℃, the CO2 emission for vehicle 1 caused by load setting variation were 62.83 and 47.42 g/km, respectively at -10 and 0℃, while those for vehicle 2 were 45.01 and 35.63 g/km, respectively.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Temperatura , Dióxido de Carbono/análise , Emissões de Veículos/análise , Gasolina/análise , Veículos Automotores
15.
Biotechnol Bioeng ; 121(3): 894-902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164703

RESUMO

Biodiesel has the potential to serve as a feasible substitute for fossil fuels in many sectors, including transportation and internal combustion engines, without requiring extensive modifications. UsinHemg alternative energy sources, including biodiesel, is necessary to effectively tackle the growing demand predominantly observed in the transportation sector. This review is aimed to examine the technological progress, potential benefits, obstacles, and prospects associated with using biodiesel in India. India exhibits a significant potential for biodiesel production due to the abundance of various biofuel crops within its territory. The information supplied includes recent information from official government reports and literature. Collaborative efforts among all stakeholders in the energy industry can achieve the realization of reducing imports of petroleum-based fuel. However, it is essential to consider several significant elements specific to the Indian context when considering the utilization of biodiesel. The reported findings in this research are expected to shed light on the current and prospects of biodiesel deployment in India.


Assuntos
Biocombustíveis , Gasolina , Produtos Agrícolas , Índia
16.
Environ Res ; 247: 118190, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237754

RESUMO

Vehicle emissions have a serious impact on urban air quality and public health, so environmental authorities around the world have introduced increasingly stringent emission regulations to reduce vehicle exhaust emissions. Nowadays, PEMS (Portable Emission Measurement System) is the most widely used method to measure on-road NOx (Nitrogen Oxides) and PN (Particle Number) emissions from HDDVs (Heavy-Duty Diesel Vehicles). However, the use of PEMS requires a lot of workforce and resources, making it both costly and time-consuming. This study proposes a neural network based on a combination of GA (Genetic Algorithm) and GRU (Gated Recurrent Unit), which uses CC (Pearson Correlation Coefficient) to determine and simplify OBD (On-board Diagnosis) data. The GA-GRU model is trained under three real driving conditions of HDDVs, divided by vehicle driving parameters, and then embedded as a soft sensor in the OBD system to monitor real-time emissions of NOx and PN within the OBD system. This research addresses the existing research gap in the development of soft sensors specifically designed for NOx and PN emission monitoring. In this study, it is demonstrated that the described soft sensor has excellent R2 values and outperforms other conventional models. This research highlights the ability of the proposed soft sensor to eliminate outliers accurately and promptly while consistently tracking predictions throughout the vehicle's lifetime. This method is a groundbreaking update to the vehicle's OBD system, permanently adding monitoring data to the vehicle's OBD, thus fundamentally improving the vehicle's self-monitoring capabilities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Monitoramento Ambiental/métodos , Veículos Automotores , Gasolina
17.
Environ Sci Pollut Res Int ; 31(6): 8608-8632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180670

RESUMO

Recent global challenges encompass profound environmental pollution and the depletion of finite fuel resources. In this study, the biodiesel used in the mixture was derived from Azolla pinnata microalgae oil through a trans-esterification reaction chosen for its high oil concentration. During the initial phase of the experiment, varying volumes of biodiesel (5%, 10%, and 15%) and n-heptane (5%, 10%, and 15%) were introduced to diesel to form a ternary fuel blend. The experimental outcome shows that an n-heptane and biodiesel mixture of 10% by volume would produce the best results. Next, experiments were carried out by incorporating 10, 40, and 80 ppm titanium oxide (TiO2) nanoparticles (NPs) in a recommended ternary fuel blend. The experimental investigation showed that D80A10H10TNP40 (diesel 80% + biodiesel 10% + n-heptane 10% + TiO2 40 ppm) caused a 7.21% increase in brake thermal efficiency (BTE) with a decrease in brake specific fuel consumption (BSFC) and brake specific energy consumption (BSEC) by 9.58% and 10%, respectively, compared to (diesel 80% + biodiesel 20%) D80A20. D80A10H10TNP40 exhibits lower emissions, with a significant reduction of 11.29% and 20.96% in carbon monoxide (CO) and unburnt hydrocarbons (UBHC), respectively. Nitrogen oxide (NOX) and smoke emissions were reduced by 3.3% and 11.13%, respectively, compared to D80A10H10. Furthermore, D80A10H10TNP40 demonstrated enhanced combustion properties, comprising a significant rise of 4.39% in-cylinder pressure (CP), 35.29% in heat release rate (HRR), and 25.05% in the rate of pressure rise (RPR). The findings of this investigation indicate that D80A10H10TNP40 exhibits enhanced efficiency, emission, and combustion properties compared to the D80A20 fuel.


Assuntos
Heptanos , Microalgas , Nanopartículas , Gasolina , Biocombustíveis , Emissões de Veículos , Óxido Nítrico , Monóxido de Carbono/análise
18.
Environ Sci Pollut Res Int ; 31(6): 8952-8962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183540

RESUMO

Methyl tert-butyl ether (MTBE), a type of gasoline additive, has been found to affect insulin function and glucose homeostasis in animal experiments, but there is still no epidemiological evidence. Zinc (Zn) is a key regulatory element of insulin secretion and function, and Zn homeostasis can be disrupted by MTBE exposure through inducing oxidative stress. Therefore, we suspected that Zn might be involved and play an important role in the process of insulin secretion inhibited by MTBE exposure. In this study, we recruited 201 male subjects including occupational and non-occupational MTBE exposure from Anhui Province, China in 2019. Serum insulin and functional analog fibroblast growth factor 1 (FGF1) and blood MTBE were detected by Elisa and headspace solid-phase microextraction and gas chromatography-high-resolution mass spectrometry. According to MTBE internal exposure level, the workers were divided into low- and high-exposed groups and found that the serum insulin level in the high-exposed group was significantly lower than that in the low-exposed group (p = 0.003) while fasting plasma glucose (FPG) level increased obviously in the high-exposed group compared to the low-exposed group (p = 0.001). Further analysis showed that MTBE exposure level was positively correlated with FPG level, but negatively correlated with serum insulin level, which suggested that the FPG level increase might be related to the decrease of serum insulin level induced by MTBE exposure. The results of further mediation effect analysis showed that changes in serum zinc levels played a major intermediary role in the process of insulin secretion inhibition and blood glucose elevation caused by MTBE exposure. In addition, a significant negative correlation was found between MTBE exposure and serum Zn level, which might play a strong mediating effect on the inhibition of insulin secretion induced by MTBE exposure. In conclusion, our study provided evidence that MTBE could inhibit insulin secretion and interfere with Zn metabolism in gas station workers for the first time, and found that Zn might play an important mediation effect during the process of inhibiting insulin secretion and interfering with glucose metabolism induced by MTBE exposure.


Assuntos
Secreção de Insulina , Insulinas , Éteres Metílicos , Zinco , Animais , Humanos , Masculino , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/química , Gasolina/efeitos adversos , Insulinas/metabolismo , Éteres Metílicos/efeitos adversos , Zinco/química , Zinco/farmacologia
19.
Environ Sci Pollut Res Int ; 31(8): 12229-12244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225496

RESUMO

Based on partial data, this paper uses BP neural network optimised by particle swarm optimisation algorithm to predict the total greenhouse gas (GHG) emissions of the line in the construction phase. The GHG emission efficiency is analysed by SBM (Slacks-Based Measure) super efficiency method. Finally, the grey relational analysis (GRA) is applied to sort the GHG emission correlation factors. Based on the existing design and quota document data of 16 stations and 16 sections of the Wuhu Monorail Line 1, we have employed a neural network optimized by particle swarm optimization algorithm to predict the total emissions of greenhouse gases during the construction phase of the entire line consisting of 25 stations and 24 sections. The GHG emissions of all stations and sections are 29,300 tons and 21,000 tons. The technical efficiency, pure technical efficiency, and scale efficiency of the stations and sections were high. As for stations, the order of influence degree is metal material consumption (0.9731) > cost (0.9486) > electric energy consumption (0.9481) > station area (0.9109) > concrete and cement consumption (0.9032) > other material consumption (0.8831) > gasoline and diesel consumption (0.7258). For the section, the order of influence degree is cost (0.9766) > concrete (0.9581) > steel reinforcement (0.9483) > other steels (0.874) > section length (0.8337) > power energy consumption (0.7169) > wood consumption (0.6684).


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Efeito Estufa , Inteligência Artificial , Gasolina , Madeira/química
20.
Mar Pollut Bull ; 199: 115990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176163

RESUMO

One year after the emergency diesel fuel spill in Norilsk, hydrocarbon concentrations in bottom sediments of the Norilsk-Pyasina water system decreased. However the average concentrations of hydrocarbons in surface sediments decreased in the same sequence (µg/g) as in 2020: the mouth of the Ambarnaya R. (835, σ = 1788) > Bezymyanny Cr.-the Daldykan R.-the Ambarnaya R. (306, σ = 273) > the Pyasina R. (23, σ = 20) > the Pyasino Lake (12, σ = 8). Concentrations decreased due to degradation of low molecular weight hydrocarbons. The content of polycyclic aromatic hydrocarbons in 2021 also changed in a smaller range (0-1027 ng/g) than in 2020 (0-3865 ng/g). Petroleum origin of polycyclic aromatic hydrocarbons in the sediments of the Ambarnaya R. (including the mouth), Bezymyanny Cr. and the Daldykan R. is confirmed by the dominance of alkylated naphthalene homologues in their composition. Hydrocarbons accumulation in some layers of the sedimentary column is caused not only by the spill of diesel fuel, but also by the organic matter from the surrounding swamps, from wetlands and floodplain lakes, as well as by the burial of the surface layer by the 2021 flood.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Gasolina , Água , Sedimentos Geológicos , Hidrocarbonetos/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...